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Abstract 

Tailed phages are viruses that infect bacteria and are the most abundant biological entity on 

Earth. Their ecological, evolutionary, and biogeochemical roles in the planet stem from their 

genomic diversity. Tailed phages can encode from 5 to 735 kilobase pairs in their genomes 

thanks to the size variability of the protective protein capsids that store them. However, the role 

of different tailed phage capsid sizes across ecosystems is unclear. A fundamental gap is the 

difficulty of associating genomic information with viral capsids in the environment. To address 

this problem, we introduced a computational approach to predict the capsid architecture (T-

number) of tailed phages using the sequence of a single gene—the major capsid protein. This 

approach relies on an allometric model that relates the genome length and capsid architecture of 

tailed phages. The application of this model to isolated phage genomes generated a library that 

associated major capsid proteins and putative capsid architectures. This library was used to train 

machine learning methods, and the most computationally scalable model investigated (random 

forest) was applied to human gut metagenomes. The study revealed a more significant frequency 

of mid-sized (T=7) capsids and jumbo-like tailed phage capsids (T=31) than expected compared 

to isolated phages. We discussed the insights of these results, how to increase the method's 

accuracy, and how to extend the approach to other viruses. The computational pipeline 

introduced here opens the doors to monitor viral capsids' ongoing evolution and selection across 

ecosystems.   

Keywords: tailed bacteriophages, icosahedral capsids, physical modeling, machine learning, 

metagenomes, gut microbiome, viral ecology, physical virology. 
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INTRODUCTION 

Tailed phages are viruses that infect bacteria and have evolved an extremely diverse set of 

protein capsid architectures to protect their infective genome (Luque et al. 2020; Berg and Roux 

2021). Tailed phage capsids sizes range from 40 nm to 180 nm in diameter (Petrovsky et al. 

2011; Suhanovsky and Teschke 2015; Gonzalez et al. 2020). The internal volumes of these 

capsids accommodate genomes spanning three orders of magnitude in length, from 5 kilobase 

pairs (kbps) to 735 kbps (Luque et al. 2020; Iyer et al. 2021). The diversity in genome length and 

genomic content of tailed phages may explain their key role in regulating ecosystems (Maurice 

2019; Silveira et al. 2021), in promoting the evolution of microbes (Zinder and Lederberg 1952; 

Keen et al. 2016; Touchon et al. 2017), in participating strongly in the planetary carbon cycle 

(Lara et al. 2017), and in becoming the most abundant biological entity on the planet (Cobián-

Güemes et al. 2016). However, the role of the different tailed phage capsid architectures and 

genome lengths across ecosystems remains unclear.  

A key challenge investigating the selection and evolution of tailed phage capsids is linking viral 

capsids with their viral genome in the environment (Brum et al. 2016). The number of phages 

isolated and studied both genetically and structurally (Duda and Teschke 2019; Krupovic and 

Koonin 2017) represent a very small sample compared to the gargantuan number of viruses 

evolving in the environment (Cobián-Güemes et al. 2016; Aylward et al. 2017; Coutinho et al. 

2017; Edwards et al. 2019; Shkoporov et al. 2019; Gregory et al. 2020; Roux et al. 2021; Benler 

et al. 2021; Shamash and Maurice 2021). Electron microscopy can measure the morphology and 

size of tailed phages, but these observations do not include genomic information, limiting how to 

interpret the change in capsid size distributions observed across ecosystems (Sulcius et al 2011; 
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Brum et al. 2013). There are trade-offs in selecting capsid sizes that are difficult to disentangle 

(Edwards et al. 2021). An increase in temperature may promote smaller genomes among viruses 

and other organisms (Nifong and Gilooly, 2016), but larger genomes encode more genes, which 

can enhance the survival of both phages and their hosts (Sullivan et al. 2006; Sieradzki et al. 

2019; Silveira et al. 2020). On the other hand, larger genomes and their associated larger capsids 

are more costly energetically, which can compromise their replication in limited growth 

conditions (Bryan et al. 2016; Mahmoudabadi et al. 2017). Additionally, an increase in size 

reduces virus diffusivity, which can negatively impact their infectivity (Joiner et al. 2019). To 

link the capsid and genomic information of viruses in the environment, we introduced a new 

computational approach that builds on the established geometrical principles governing the 

capsid structure and genome packing of tailed phages (Roos et al. 2010; Luque and Reguera 

2013; Fokine and Rossmann 2014; Suhanovsky and Teschke 2015; Evilevitch 2018). 

The majority—80% to 90%—of tailed phage capsids are quasi-spherical (Ackermann 2007). 

Among tailed phages, the capsids are built from multiple copies of the major capsid protein, 

which systematically adopt the HK97-fold (Wikoff et al. 2000; Pietilä et al. 2013; Duda and 

Teschke 2019). Capsid proteins in tailed phages are organized following hexagonal and 

trihexagonal icosahedral lattices, Figure 1 (Twarock and Luque 2019; Podgorski et al 2020; 

Luque et al. 2020), and the double-stranded DNA genome is packed in the capsid at 

quasicrystalline densities (Earnshaw and Casjens 1980; Liu et al. 2014; Luque et al. 2020). The 

number of capsid proteins is determined by the triangulation number or T-number, which is a 

discrete index determining the possible capsid surfaces compatible with icosahedral symmetry 

(Caspar and Klug 1962; Twarock and Luque 2019). The number of major capsid proteins is 60T0 

(Figure 1), where T0 represents the classic T-number: 
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𝑇!(ℎ, 𝑘) 	= 	ℎ" + ℎ𝑘	 + 𝑘"	. 
(1) 

In the generalized theory for icosahedral capsids, the T-number for the hexagonal lattice is Thex = 

T0, and the T-number for the trihexagonal lattice is Ttri = 4/3 T0 (Twarock and Luque 2019). The 

factor 4/3 ≈ 1.33 accounts for the additional surface associated with 60T0 minor capsid proteins 

inserted as trimers in the trihexagonal lattice (Figure 1). Empirical and bioinformatic studies 

indicate that tailed phages can adopt capsid architectures from T = 1.33 to T = 52 (Suhanovsky 

and Teschke 2015; Luque et al. 2020). The T-number follows an allometric relationship with the 

genome length with an approximate exponent of 2/3 ≈ 0.67 because the T-number is proportional 

to the capsid surface and the genome length is proportional to the capsid volume (Luque et al. 

2020). Thus, the increase in genomic content is associated with larger tailed phage capsids built 

with more capsid proteins. Since the major capsid proteins conserve the HK97-fold while 

adopting a large diversity of sequences, here we propose that part of this sequence diversity is 

associated with the formation of different T-number capsids. 

Confirming a direct relationship between major capsid protein sequences and T-number capsids 

would open the doors of predicting the capsid architecture of tailed phages (and genome lengths) 

from a single gene. This would facilitate inferring tailed phage capsids from sequenced 

environmental data that is now obtained routinely (Breitbart et al. 2002; Silveira et al. 2020; 

Roux et al. 2021; Liang and Bushman 2021; Santos-Medellin et al. 2021). To test the capsid 

protein-to-T-number association, we developed a computational approach that can predict 

accurately the capsid architectures of tailed phages from the major capsid protein gene (Figure 

2). First, the genome-to-T-number model (G2T) was built by validating and training a power 
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function physical model using a database of high-resolution tailed phage capsids (Figure 2a). 

Major capsid proteins (MCPs) adopting HK97-fold were obtained from tailed phage genome 

isolates, and the G2T model was applied to the genomes to obtain the putative capsid 

architectures among these phage isolates, generating the MCP/T library (Figure 2b). The MCP/T 

library was used to train the major capsid protein-to-T-number (MCP2T) models using a 

proximity matrix approach (MCP2T-PM) and a random forest approach (MCP2T-RF) (Figure 

2c). Finally, these statistical learning models were applied to metagenomic data to infer the 

capsid architecture of uncultured tailed phages in the human gut.  

METHODS 

Genome-to-T-number (G2T) model. The genome-to-T-number (G2T) model was a physical 

model that predicted the capsid architecture (T-number) of a tailed phage from its genome length 

(Figure 2a). The G2T model relied on an established physical allometric relation between the 

genome length and tailed phage capsid architecture (Luque et al. Microorganisms 2020). The 

model was trained with published high-resolution structural data of tailed phage capsids as 

detailed below.  

Data acquisition. Tailed phages containing high-resolution capsid data were initially identified 

from a recent review article in the field (Suhanovsky and Teschke 2015), the icosahedral capsid 

database VIPERdb (Montiel-Garcia et al 2021), and four recently reconstructed tailed phages 

displaying new T-numbers: the jumbo tailed phage SCTP2 (Hua et al. 2017) and P74-26, P23-

45, and Mic1 (Stone et al. 2019; Bayfield et al. 2019; Jin et al. 2019). The capsid protein 

stoichiometry and high-resolution structures were revised to update the T-numbers according to 

the generalized quasi-equivalence icosahedral framework, including hexagonal and trihexagonal 
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lattices observed among tailed phages (Twarock and Luque 2019). The final high-resolution 

database included nHR = 37 tailed phage capsid structures (Table 1 and Data File 1). 

Statistical model. A power function model 𝑇(𝐺) = 𝑏 , #
#!
-
$
	related the T-number as a function of 

the genome length, G. Here, b was the prefactor constant, a the allometric exponent, and G0 the 

reference units of G, G0 = 1 kbp. This allometric relationship was empirically and theoretically 

established previously for a smaller number of tailed phages (Hua et al. 2015; Luque et al, 2020). 

The allometric relationship is a consequence of the constant density of the genome stored in 

tailed phage capsids and constant surface of the major protein on the capsid exterior (Luque et al, 

2020). The theory predicts an allometric exponent ath = 2/3 because the T-number scales like the 

capsid surface and the genome scales with the capsid volume. A derivation of the theoretical 

prediction is provided in the Supplementary Information (section SI-1). The model was 

linearized using a logarithmic transformation: 

𝑙𝑛	 𝑇 = 𝑎	𝑙𝑛(𝐺/𝐺!) + 𝑙𝑛	𝑏	 (2) 

The slope (a) and intercept (ln b) of best fit were obtained using the least squares method in the 

Linear Regression function from the Scikit learn package for Python (Pedregosa et al. 2011). The 

residual bias and coefficient of determination of this model were compared with alternative 

models (exponential, quadratic, reciprocal, logarithmic) for quality control, confirming the 

adequacy of the power function model (Supplementary Information, section SI-2 and Figure S2-

1).  
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Model accuracy. The accuracy of the G2T model was investigated statistically using different 

training sets. This estimated the expected model’s error and facilitated making projections to 

judge if increasing the data set would improve the model. The approach was as follows. The best 

fit values for the G2T model, Eq. (2), were obtained using different training data sets of size n, 

ranging from n = 5 to n = 30. The n data points in a training data set were chosen randomly from 

the high-resolution tailed phage capsid database (Table 1). For each model, the T-number was 

predicted from the genome length of the remaining capsid structures (nHR – n, that is, 37 – n). 

The relative error was defined as the model’s residual (difference between the predicted T-

number and the empirical T-number) divided by the empirical T-number. This process was 

repeated 10,000 times for each n to estimate the G2T’s mean relative error (MRE) as a function 

of the training data set size, n. To predict the accuracy of the model for data sets larger than the 

current database, (n > nHR), the trend of the mean relative error, MREn was fitted to an 

exponential model  

𝑀𝑅𝐸(𝑛) = 𝑝𝑒%&' +𝑤	 (3) 

 

The values of best fit for the model parameters p, q, and w were obtained applying the robust 

least squares method from the least squares function in the Python’s SciPy optimize package 

(Virtanen et al. 2020). The confidence interval of the parameters was estimated by bootstrapping 

the MREn in 10,000 random subsets and fitting Eq. (3) in each case. A genome length was 

associated with a T-number in the hexagonal or trihexagonal lattice if the uncertainty of the 

predicted T value, that is, T±ΔT, contained such T-number. The uncertainty ΔT was calculated 
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based on the mean relative error projected from Eq. (3) for the size of the high-resolution 

database, n = nHR = 37, that is, ΔT = T·MRE(nHR). 

MCP/T library. Major capsid protein amino-acid sequences associated with tailed phages were 

obtained from isolated genomes accessed on the phantome.org website in January 2017 

(PhAnToMe 2017). Genomes listed as Caudovirales (the taxonomic order of tailed phages) in 

the GenBank ORGANISM field were filtered. Among the 2,996 Caudovirales genomes 

identified, protein-coding genes (CDS) containing the term “major capsid” as a product keyword 

were selected, leading to 669 putative tailed phage major capsid proteins.  The folded structures 

for the selected major capsid proteins were obtained investigating structural relatives in HHpred 

using the PDB database and submitting the top candidates (above 95% probability) to Modeller 

(Zimmermann et al 2018, Gabler et al 2020, Söding J. 2005, Hildebrand et al 2009, Meier and 

Söding 2015). The folded models were inspected visually. Only those major capsid proteins 

displaying the canonical features of the HK97-fold were selected (Suhanovsky and Teschke, 

2015). This led to a final library of nlib = 617 tailed phage major capsid protein sequences 

associated with genome lengths (Data File 2 and Figure 2b). 

The multimodal distribution of genome lengths was investigated using the non-parametric kernel 

density estimation method. The kernel used was Gaussian and the bandwidth (2 kbp) was 

obtained from the most likely kernel distribution using Scikit grid search 50-fold cross-validation 

(Pedregosa et al. 2011). The peaks of the distribution were obtained using the find peaks function 

from the SciPy signal package for Python (Virtanen et al. 2020). The G2T model was applied to 

obtain the most likely T-number associated with a genome length, and to generate the MCP/T 

library (Figure 2b). The architectures were categorized as “elongated” if the predicted T-number 
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was not within the error margin of a valid icosahedral T-number. If the predicted T-number fell 

within the ranges of one or several overlapping T-numbers regions, the T-number selected was 

closest to the mean predicted T-number. The alternative T-numbers were tallied. For T-numbers 

associated with multiple lattices (for example, T=12 trihexagonal versus T=12 hexagonal), each 

architecture was considered as a potential structure. 

MCP-to-capsid model based on similarity (proximity matrix): MCP2C-PM. Protein-protein 

sequence similarities were obtained for the MCPs in the library using NCBI blastp (Madden 

2013), applying the default algorithm parameters except for the e-value threshold, which was 

chosen to be 0.001 to increase the quality and decrease the effects of randomness for the 

matches. In any instance where blastp returned more than one score for any pair of phages, the 

higher similarity score was chosen for the pair. In the MCP/T library, 80% of the data was 

selected randomly as the training set and the remaining 20% was used as the test dataset (80/20 

split). For statistical robustness, 1000 different 80/20 training and test splits were generated. For 

each major capsid protein sequence in the test set, the T-number predicted corresponded to the T-

number associated with the most similar major capsid protein sequence in the training set 

(proximity matrix). A prediction was considered correct if the T-number predicted coincided 

with the T-number associated with the major capsid protein in the MCP/T library. The model 

accuracy was defined as the fraction of correct predictions in the full test dataset. The accuracy 

was investigated as a function of different minimum similarity thresholds, from 0% to 100% 

similarity in increments of 10%. In each case, the fraction of predicted architectures was tallied. 
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MCP-to-capsid model based on random forest: MCP2C-RF. The similarity model introduced 

above has two important limitations. First, the method cannot predict the capsid architecture for 

major capsid proteins that have no similarity in the MCP/T library. Most tailed phage genes 

identified environmentally have no apparent similarity to genes in public databases 

(Krishnamurthy and Wang D, 2017). Second, the matrix similarity is a computational search 

method of quadratic order, O(nlib2), which limits the scalability of the model when increasing the 

size of the training library, nlib. To circumvent these foreseeable challenges when characterizing 

environmental data, an alternative machine learning method was investigated and compared. The 

approach chosen was random forest because it offers a rapid learning process when the training 

sets are small with respect to the dimensionality of data, and the cost of prediction is independent 

of the training data set’s size (James et al. 2013). 

Random Forest is an ensemble statistical learning algorithm that generates multiple decision 

trees using a collection of features as inputs and output labeled values (regression). To create 

each of these decision trees, m random observations and f random features are selected from the 

original data and the corresponding labels used as targets. A final sorting decision is made based 

on the trees formed by the training data and can then be used to generate a proposed label for 

each test data point. (Ho 1995, Breiman 2001). A total of 22 MCP amino-amino acid features 

were used to train the random forest model: protein sequence length, amino-acid composition 

(frequency of each amino acid in the sequence), and the protein’s isoelectric point as calculated 

via web server at isoelectric.org (Kozlowski, 2016). These features have been previously used to 

identify functions of viral proteins efficiently in machine learning approaches (Seguritan et al. 

2012, Cantú et al. 2020). The T-number associated to each major capsid protein in the MCP/T 

library was used as the label for the random forest classification. An 80/20 training/test split was 
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applied to the library to test the random forest model. Given a major capsid protein sequence, a 

predicted capsid architecture was considered correct if the predicted T-number was within the 

margin of error expected associated with the T-number in the MCP/T library. The number of 

correctly predicted phages was tallied and used to calculate a percentage accuracy for that test 

set. The random forest parameters were optimized for accuracy using Scikit’s GridSearchCV 

function (Pedregosa et al. 2011). 80% of the library was used. The top 10 estimators were run 

100 times each to verify the aggregate highest average accuracy. This led to a maximum number 

of 4 features per tree, 1,000 estimators, a max depth of 20, 1 minimum sample in a leaf, and a 

minimum sample split of 6, with data bootstrapping, and using a balanced weight distribution. 

To ensure statistical robustness, the random forest model was tested selecting 1000 different 

randomly generated training datasets from the MCP/T library. Both permutation and dropout 

analysis were performed on all features. The randomization or omission of no single feature 

caused deviation greater than 5.5% (See Supplementary Information, SI-3 for details). 

To determine the impact of increasing the training library in the accuracy of the random forest 

model, the accuracy of the model was assessed for different library sizes and fitted to a 

mathematical model. The different sizes for the training set were defined as ni = nlib i/20 for a 

total of twenty training sizes, i = 1 to 19. The size of the testing set was nlib – ni = nlib (1– i/20). 

For statistical robustness, 1000 different training sets were generated for each size ni and the 

mean accuracy was measured in each case, MACCi . The mean accuracy values were fitted to a 

logarithmic model 

𝑀𝐴𝐶𝐶(𝑛) = 𝑔	ln	𝑛	+ ℎ	 (4) 
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The values of best fit for the parameters g and h were obtained using the robust least squares 

method. The confidence intervals of the values of best fit were obtained by bootstrapping 10,000 

subsets generated randomly from the estimated mean accuracies, MACCi. 

Computational performance of MCP2C models. The computational scalability of the 

proximity matrix similarity (MCP2C-PM) and random forest (MCP2C-RF) models was 

estimated generating larger artificial libraries. The original MCP/T library (nlib = 617) was 

sequentially used 15 times, generating 15 artificial libraries with 617 to 10,035 entries. Both 

models were trained (80/20 split) for 100 different randomly selected training sets for each 

library size. For each training, the elapsed training time was recorded, and the statistics of the 

training time were obtained for each model and library size. Then, the T-number of 50 major 

capsid protein sequences were predicted to tally in each case the elapsed time for the prediction. 

These time-searches were averaged for each generated model and library size. Linear and 

quadratic models were fitted to the average times as a function of the library size using least-

squares method via numpy polyfit (Harris et al. 2020). These fitted models were used to 

extrapolate the scalability of the two methods for libraries as large as 1,000,000 entries. The 

elapsed times were obtained on Lenovo laptop with an intel i7 processor and 16GB RAM. 

Capsid architecture prediction from gut metagenomes. 3,173 metagenomically assembled 

genomes with canonical tailed phage markers published in Benler et al. 2021 were accessed at 

ftp://ftp.ncbi.nih.gov/pub/yutinn/benler_2020/gut_phages/ in the NCBI server. The open reading 

frame sequences (putative proteins) were input to the PhANNs web server (Cantú et al. 2020). 

Proteins that displayed major capsid protein function as the highest score were selected. Those 

proteins with score ≥ 2 were further selected. The expected accuracy of using this score is 98% 
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(true positives). These selected putative major capsid proteins were run in the MCP2T-RF model 

to predict capsid architectures. 

 

RESULTS 

Genome length predicts capsid architecture with 90% accuracy. The power function model, 

Eq. (2), relating the capsid architecture, T, as a function of the genome length, G, explained 98% 

of the variance (R2 = 0.98, n = 37, Figure 3a). This model is referred to as the genome-to-T-

number (G2T) model. In the high-resolution capsid database, the genome lengths, G, ranged 

from G = 16.7 kilobase pairs (kbp) to 498.0 kbp. The capsid architectures ranged from T = 4 to 

52 (see Data File 1). The fitted allometric exponent was 0.71±0.03. This value was consistent 

with a prior analysis using a smaller dataset (0.68±0.09, n=23) (Luque et al. 2020). The value 

was also close to the theoretical value, 2/3≈0.67, expected for quasi-spherical shells packing a 

genome at a constant density (see Supplementary Information, section SI-1 for derivation). The 

mean relative error of the G2T model was 9% when testing the model using 30 structures for 

training and 7 for testing, 80/20 split. The analysis of the relative error using different training 

sizes revealed an initial exponential decay with training size, n, saturating at ~9% for n ≥ 25 (R2 

= 0.99, Figure 3b). This implied that the genome length can predict the capsid architecture with 

91% accuracy, and this accuracy is not expected improve when increasing the number of high-

resolution capsid architectures.  

Phage isolates display multimodal genome lengths dominated by T=7, 9, and 19 

architectures. The genome length distribution of tailed phage genomes (nlib = 617) displayed a 
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multimodal distribution with 18 peaks (Figure 4a). The densest genome regions were around ~40 

kbp and ~160 kbp. The G2T model revealed that 10 out of the 18 peaks (55%) were associated 

with T-number architectures. Several possible T-number ranges overlap, thus yielding more than 

one possible T-number assignment for 37% of phages (See SI-4 for details). The remaining eight 

peaks (45%) were associated with alternative capsid architectures, which were interpreted as 

elongated architectures. The peak densities of elongated architectures, however, were far less 

prominent than those associated with icosahedral architectures. The total fraction of elongated 

architectures among isolates was predicted to be 17% (Figure 4b). This number was consistent 

with the observation of 10% to 20% of elongated architectures among isolates imaged with 

transmission electron microscopy (Ackermann 2007). Among the remaining 83% of capsid 

architectures, which were predicted to be icosahedral, the most frequent capsids were T=7 

(32%), T=9 (11%), and T=19 (14%) (Figure 4c). These three architectures combined accounted 

for 57% of the putative structures. In the high-resolution database (Data File 1) 20 capsids were 

T=7 (54%), no capsids were T=9 (0%) and two capsids were T=19 (5%). Therefore, with respect 

to tailed phage isolates, T=7 has been over sampled in high-resolution capsid studies, while T=9 

and T=19 have been under sampled. 

Protein sequence similarity can predict capsid architecture above 70% accuracy, but 

predictions are not guaranteed. The analysis of the MCP/T library curated from isolates (nlib = 

617) revealed that MCPs sharing more than 80% similarity were associated with similar T-

number architectures, with a mean relative difference in T-number of 2% (Figure 5a). The 

relative T-number difference ranged from 0% to 7% for these highly similar MCPs. As the MCP 

similarity dropped below 60% the range of associated architectures increased substantially 

(Figure 5a and Table SI-5). In the last group, MCP similarities below 20%, the mean relative 
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difference in T-number was 62% with a broad range ranging from 0% to 421%. A subset of 

14.3% of the MCPs that shared less than 20% similarity were predicted to form the same capsid 

architecture. This implies that high protein sequence similarity is a good predictor of capsid 

architecture, but very distant protein sequences can form the same capsid architecture. The 

prediction of capsid architectures based on MCP-MCP similarity (MCP2T-PM model) assigned 

T-numbers to 95% of the test set with 73% accuracy when the proximity did not require a 

minimum similarity threshold to make a prediction (Figure 5b). As the similarity percentage 

required to make a prediction increased, the accuracy increased slightly, reaching 80% when 

requiring 90% similarity. However, above similarity thresholds of 20%, the number of 

predictions possible decreased substantially, reaching 58% of the test dataset when requiring 

90% similarity (Figure 5b). 

MCP amino-acid composition predicts capsid architecture with 74% accuracy. The random 

forest model (MCP2T-RF) trained using the MCP/T library (n = 494 out of 617 in a 80/20 split) 

successfully identified 88% of the structures as either icosahedral or elongated (Figure 6a). The 

accuracy strongly depends on the specific T-number (Figure 6b). For T=4, 12, 16, 19, and 31 the 

accuracy was above 80%. For T=9.33 and 21.33, the accuracy was below 50%. The rest of T-

numbers were predicted near the average accuracy of 74%. The most frequent architectures 

yielded 80% (T=7), 82% (T=9), and 86% (T=19) accuracy (see SI-6 for further details on the T-

number confusion matrix). The most relevant amino-acid sequence features classifying the T-

number were amino-acid length (l) and frequency of glycine (G), threonine (T), cysteine (C), and 

histidine (H) (Figure SI-3). The accuracy of the model was investigated as a function of the size 

of the training data set. This identified a logarithmic increase of accuracy with the training size 

(R2 = 0.996, Figure 6c). The accuracy model predicts that reaching a 90% accuracy would 
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require a training set of 2,097, that is, a library of 2,621 major capsids proteins and putative 

capsid architectures. 

The training time of the random forest model increased linearly with the size of the training data 

set (slope = 2 milliseconds/datum, R2 = 1.00, Figure SI-7a). Training the random forest model 

with a training set of size 2,000 (predicted to be 90%) accurate would take about 20 seconds. The 

increase in training time was about two times less costly than for the similarity model (slope = 4 

milliseconds/datum, R2 = 1.00, Figure SI-7a). In the random forest model, a single prediction 

was independent of the training size, approximately 1 millisecond for a single search (Figure SI-

7b). For the similarity model, the search time was faster for small training sizes, but it increased 

quadratically with the training size, that is, O(n2) (Figure SI-7b). The crossover time-search was 

around training size sets of size 10,000, with a search time on the order of 1 millisecond. 

Therefore, the random forest model provided a scalable approach.   

Gut phages in microbial communities are predicted to form T=12 capsids more frequently 

than observed among isolates. A total of 1,488 high-quality major capsid protein (MCP) 

annotations were identified among 3,181 metagenomically assembled genomes from gut samples 

containing tailed phage markers (Figure 7a). The MCP2T-RF model predicted the presence of 

capsid architectures ranging from T = 4 to T = 31. The most frequent predicted capsid 

architecture was T = 7 (68.9%), followed by T = 19 (9.5%), and T = 31 (8.2%) (Figure 7b). The 

frequency of predicted elongated capsids was 2.2% (see Data File 3). The frequency of putative 

T=7 capsid architectures in gut metagenomes was significantly larger than those predicted 

among tailed phage isolates (Figures 4b and 7b). This was interpreted due to the large presence 

of integrated prophages in bacterial genomes in the gut (Howard-Varona et al. 2017; Luque and 
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Silveira 2020). The genome length of phages that can integrate as prophages is typically around 

45 bps (Bobay et al. 2014), which is within genome length that we predict to be associated with 

T=7 capsids. The significantly larger frequency of T = 31 architectures in gut metagenomes 

compared to tailed phage isolates aligns with the observations of jumbo phages, which had been 

particularly elusive until the emergence of sequencing (Berg and Roux 2021).  

 

DISCUSSION 

The computational model introduced here confirmed a strong association between the 

information encoded in the major capsid protein and the capsid architecture of tailed phages. The 

application of this model to metagenomic data facilitated surveying the putative capsid 

architectures of tailed phages in the human gut microbiome. The most frequent capsid predicted 

was T = 7. High-resolution studies have revealed that this architecture is common among tailed 

phages (Suhanovsky and Teschke 2015), but the number of hits observed in gut metagenomes 

exceeded the initial expectation. Our interpretation is that this high frequency is associated with 

the prevalence of lysogeny in gut bacteria (Shkoporov et al. 2019; Luque and Silveira, 2021). 

Temperate tailed phages can integrate in bacterial genomes as prophages, forming lysogenic 

bacteria that can alter the functionality of microbiomes (Knowles et al. 2016; Howard-Varona et 

al. 2017). These prophages are expected to be present in gut metagenomes in addition to free 

tailed phages. Temperate phages are characterized by adopting genomes around 45 kbp (Bobay 

et al 2014), which, based on our model, are expected to be associated with T=7 capsids, as 

observed in lambda and other temperate lambdoids (Casjens and Hendrix 2015). Prophages in 

bacteria can be domesticated and shortened in genome length (Bobay et al 2014), but the 
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remaining major capsid protein would indicate that the free version of the prophage was 

encoding a T=7 capsid.   

The gut metagenome analysis also identified a significant presence of T=31 capsids (Figure 7b). 

This was an unexpected result because there are no described T=31 high-resolution architectures 

to date (Table 1), and among tailed phage isolates, the genome-to-T-number model identified 

only a small fraction of putative T=31 capsids. Nonetheless, the model associates T=31 capsid 

architecture with a typical genome range of 308-369 kbps. Phages with genome lengths above 

200 kbp are considered jumbo phages, and recent studies have discovered that they are far more 

common than initially expected across ecosystems (Fokine et al. 2005; Iyer et al 2021; Berg and 

Roux 2021). Our analysis indicates that T=31 jumbo tailed phages might be particularly 

prevalent in gut microbiomes and the detailed genomic and structural characterization of this 

group might be key to understanding the ecology of phage and bacteria the human gut.  

The computational model introduced here is a first step to bridge viral genomic information with 

viral structural phenotype in microbiomes. However, there are important steps ahead to improve 

the accuracy of the models. The MCP2T-RF model is projected to reach an accuracy of 90% 

using a library of 2,600 MCPs and putative T-number architectures (Figure 6c). However, to go 

beyond this accuracy, it would be necessary first to improve the underlying genome-to-T-number 

(G2T) model responsible for building the MCP/T library (Figure 2). The G2T model currently 

has an accuracy of 91%, but this error is not projected to be reduced when increasing the number 

of structures in the high-resolution database (Figure 3b). This implies that at least one more 

genome feature would be necessary in addition to the genome length. One compelling direction 

would be to add the tailed phage packing strategy. Head-full mechanisms tend to pack more 
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DNA than encoded in the genome, while packing signal mechanisms pack exactly the genome 

length (Casjens and Gilcrease 2009; Hua et al. 2017). These variations may explain that the 

empirical exponent in the power-function model is slightly larger than the theoretical prediction 

(Figure 3a). 

The research introduced here does not clarify the structural reasons why features such as amino-

acid sequence length as well as glycine and threonine frequencies are so relevant in predicting 

capsid architecture. Follow-up structural analyses would be necessary to reveal the origin of this 

association. Additionally, information from other proteins involved in the assembly of tailed 

phages (like scaffold, minor capsid proteins, and reinforcement proteins) will be necessary to 

predict more accurately the capsid architecture as well as alternative capsid architectures formed 

by the same major capsid protein (Lander et al 2008; Fokine and Rossmann 2014; Dearborn et 

al. 2017; Podgorski et al 2020). It is now possible to predict these protein functions from 

genomic data, but the accuracy is typically lower than for major capsid proteins, and some 

categories are still hard to predict correctly, like minor capsid proteins (Cantú et al 2020). 

The method presented here could be adapted to also predict the capsid architecture of other 

viruses. The first key step would be identifying strong allometric relationships between the 

genome length and capsid architecture of those viruses (Figure 2a). The analysis of allometric 

relationship between virion volume and genome length combining all virus types has led to non-

optimal statistical results due to the variance between virus groups (Cui 2014, Brandes and Linial 

2016, Edwards et al. 2021). A strategy to improve the accuracy of this relationship is separating 

viruses that use the same capsid protein fold and genome storage strategy (Abrescia et al. 2012; 

Twarock and Luque, 2019; Koonin et al. 2020). The second step would be generating the library 
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of capsid proteins and capsid architectures using isolated genomes (Figure 2b), and the third 

would be using these libraries to train similar statistical learning methods as those presented here 

(Figure 2c). Sequencing technologies are now capable of identifying both DNA and RNA viruses 

(Roux et al. 2016; Fitzpatrick et al. 2021). The development of bioinformatic pipelines as the one 

used here would facilitate constant monitoring and analysis of viral capsids of different virus 

groups in the environment (Figure 7a). 

CONCLUSION 

The protein-to-capsid model introduced here predicts the architecture of tailed phages from just 

one gene (the major capsid protein) with 74% accuracy. Increasing the library of proteins and 

putative architectures around 2,600 could increase this accuracy to 90%. The application of this 

approach in human gut metagenomes predicted the presence of a jumbo capsid architecture 

(T=31) that has not been characterized among high-resolution tailed phage capsids. The method 

introduced here will facilitate bridging the evolution and selection of tailed phage genomic data 

with capsid architecture. This would eventually help identify the functions associated with 

capsids beyond storage capacity.  
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TABLES AND FIGURES 

Phage T Genome (kbp) Reference 
C1 4 16.687 Aksyuk et al. 2012 
HSTV-1 7 32.189 Pietila et al. 2013 
P2 7 33.59 Dearborn et al. 2012 
TP901-1 7 37.667 Bebeacua et al. 2013 
Sf6 7 39.044 Parent et al. 2012 
ε15 7 39.671 Baker et al. 2013; Jiang et al. 2008 
HK97 7 39.732 Gertsman et al. 2009; Helgstrand et al. 2003; Wikoff et al. 2000 
T7 7 39.937 Agirrezabala et al. 2007, Guo et al. 2014, Ionel et al. 2011 
CUS-3 7 40.207 Parent et al. 2014 
HK022 7 40.751 Pride et al. 2006 
Pf-WMP4 7 40.938 Liu et al. 2007 
BPP-1 7 42.943 Zhang et al. 2013 
P22 7 43.5 Chen et al. 2011; Parent et al. 2010a 
80α 7 43.859 Spilman et al. 2011 
K1E/K1-5 7 44.7 Leiman et al. 2007 
P-SSP7 7 44.97 Liu et al. 2010 
Gifsy-2 7 45.84 Effantin et al. 2010 
Syn5 7 46.214 Gipson et al. 2014, and Pope et al. 2007 
Λ 7 48.49 Lander et al. 2008 
CW02 7 49.39 Shen et al. 2012 
SPP1 7 49.5 White et al. 2012 
SIO-2 12 80 Lander et al. 2012 
P74-26 9.33 83 Stone et al. 2019 
P23-45 9.33 84.2 Bayfield et al. 2019 
Basilisk 12 81.79 Grose et al. 2014; Twarock and Luque 2019 
Mic1 13 92.627 Jin et al. 2019 
T5 13 121.75 Effantin et al. 2006 
SPO1 16 132.56 Duda et al. 2006 
ΦM12 19 194.701 Stroupe et al. 2014 
N3 19 207 Suhanovsky and Teschke 2015; Hua et al. 2017 
PAU 25 219 Suhanovsky and Teschke 2015; Hua et al. 2017 
ΦRSL1 27 240 Effantin et al. 2013 
PBS1 27 252 Suhanovsky and Teschke 2015; Hua et al. 2017 
ΦKZ 27 280 Fokine et al. 2005 
121Q 28 348.532 Suhanovsky and Teschke 2015 
SCTP2 39 440 Hua et al. 2017 
G 52 498 Suhanovsky and Teschke 2015; Hua et al. 2017 

Table 1. High-resolution capsid database. See additional information in Data File 1. 
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Figure 1. Icosahedral capsids among tailed phages. The hexagonal (top) and trihexagonal (bottom) 

icosahedral lattices observed among icosahedral tailed phage capsids. Major capsid proteins (MCPs) form 

clusters of five (pentamers) and six (hexamers) proteins. Two nearby pentamers are connected by h and k 

steps crossing over hexamers. The trihexagonal lattice also contains minor capsid proteins (mCPs) 

clustered in groups of three (trimers). The T-number is proportional to the number of major and minor 

capsid proteins. T0 is the T-number defined by the classic icosahedral capsid theory (Caspar and Klug, 

1962). Thex and Ttri are the T-numbers associated, respectively, with the hexagonal and trihexagonal 

lattices defined by the generalized icosahedral capsid theory (Twarock and Luque, 2019). The top and 

bottom capsid examples correspond, respectively, to phage HK97 (PDB 2fs3; Gan et al. 2006) and phage 

patience (EMDB-21123; Podgorski et al. 2020). The capsids were rendered with ChimeraX (Pettersen et 

al. 2021). The 3D icosahedral lattice models were produced with the generalized hkcage tool in 

ChimeraX (Luque et al. 2020).  

 



 

33 
 

 

Figure 2. Computational approach to predict capsid architecture from genomic information. a) A 

database containing tailed phage genomes and their associated high-resolution capsid reconstructions was 

used to validate the physical genome-to-T-number (G2T) model. b) A database containing isolated tailed 

phage genomes and encoded HK97-fold major capsid proteins (MCPs) was curated. The G2T model was 

used to identify the putative T-number capsid architectures associated with each HK97-fold MCP, 

obtaining the MCP/T library. c) The MCP/T library was used to train statistical learning methods to 

predict the capsid architecture of tailed phages from information in the MCP sequence, leading to the so-

called major capsid protein-to-T-number (MCP2T) models. The MCP2T-PM model was built on a 

proximity matrix (PM) algorithm using protein sequence similarity. The MCP2T-RF model was built on a 

random forest algorithm using MCP amino-acid composition as features. 
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Figure 3. Genome-to-T-number (G2T) model regression and accuracy. a) T-number as a function of 

genome length in log-log scale (natural log) obtained from tailed phage capsid 3D reconstructions (black 

product signs). The data is available in Data File 1. Vertical lines are displayed every 10 kbp as guide to 

the eye. The dotted black line corresponds to the linear regression of the power function model in log-log 

scale (Eq. 2). The gray band indicates the 95% confidence interval of the regression. The values of best fit 

(a and b), coefficient of determination (R2), and number of structures (n) are displayed in the legend. b) 

Mean relative error, MRE, of the linear regression model in panel a) as a function of the size of the 

training set, n (blue squares). The error bars represent the standard deviation of the mean relative error. 

The solid, gray line corresponds to an exponential decay model capturing the trend of the mean relative 

error. The model, values of best fit (p, q, w), and coefficient of determination (R2) are displayed in the 

legend.   



 

35 
 

 

Figure 4. Putative capsid architectures among phage isolates in the MCP library. a) Probability 

density distribution of genome lengths (black line). The density was built with Gaussian kernels with a 2 

kbp width. The black product signs indicate the peaks of the probability density function. Genome length 

regions predicted to form icosahedral capsids (G2T model) are shaded in blue. The regions associated 

with putative elongated capsids are shaded in gray. The T-numbers associated with peaks and shoulders 

are displayed.  b) Frequency of predicted T-numbers. The bar colors are associated with icosahedral and 

elongated capsids as in panel a). c) 3D models for the three most common predicted capsid architectures 

generated with the hkcage function in Chimera X (Pettersen et al. 2021, Luque et al. 2020). The blue 

arrows and black dots highlight the steps in the hexagonal lattice. 
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Figure 5. Association between major capsid protein similarity and capsid architecture. a) The 

dissimilarity in capsid architecture (defined as the relative difference in T-number) is plotted for pairs of 

major capsid proteins. The pairs are grouped in increments of 20% in protein sequence similarity. The 

distribution of the relative differences in T-number is plotted as a violin plot (blue shade). Each violin plot 

includes the median (white dot) and the 25th to 75th quantile range (black bar). b) The percentage of 

capsid architectures predicted correctly (accuracy) is plotted as a function of the minimum sequence 

similarity require to generate a prediction (product signs). The triangle symbols represent the percentage 

of capsids predicted. The lines connecting points provide a guide to the eye.  
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Figure 6. Capsid architecture prediction from major capsid protein sequence composition. a) 

Confusion matrix comparing predicted and actual capsid morphologies for the random forest model. The 

green gradient scale covers from 0% to 100%. b) Accuracy of the random forest model predicting 

different T-numbers (green bars). The gray bar is the accuracy predicting elongated capsids. The dashed 

line indicates the average accuracy. c) The mean accuracy of the random forest model is plotted as a 

function of the size of the training set, n (green dots). The error-bars are the standard deviation. The solid, 

gray line is the fitted logarithmic model capturing the trend in the mean accuracy. The legend displays the 

model, fitted parameters (g and h), and coefficient of determination, R2.  
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Figure 7. Capsid architectures predicted from MCPs annotated in gut metagenomes. a) 

Bioinformatic pipeline displaying the key steps and tools used to predict tailed phage capsids from gut 

metagenomic data. b) Frequency of capsid architectures. The most frequent T-numbers are labeled, 

including the putative genome length range in parenthesis.  


